J-class Operators and Hypercyclicity

نویسندگان

  • GEORGE COSTAKIS
  • ANTONIOS MANOUSSOS
چکیده

The purpose of the present work is to treat a new notion related to linear dynamics, which can be viewed as a “localization” of the notion of hypercyclicity. In particular, let T be a bounded linear operator acting on a Banach space X and let x be a non-zero vector in X such that for every open neighborhood U ⊂ X of x and every non-empty open set V ⊂ X there exists a positive integer n such that T U ∩ V 6= ∅. In this case T will be called a J-class operator. We investigate the class of operators satisfying the above property and provide various examples. It is worthwhile to mention that many results from the theory of hypercyclic operators have their analogues in this setting. For example we establish results related to the Bourdon-Feldman theorem and we characterize the J-class weighted shifts. We would also like to stress that even non-separable Banach spaces which do not support topologically transitive operators, as for example l∞(N), do admit J-class operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bishop ’ S Property ( Β ) , Hypercyclicity and Hyperinvariant Subspaces

The question whether every operator on H has an hyperinvariant subspace is one of the most difficult problems in operator theory. The purpose of this paper is to make a beginning on the hyperinvariant subspace problems for another class of operators closely related to the normal operators namely, the class of k -quasi-class A operators. A necessary and sufficient condition for the hypercyclicit...

متن کامل

A review of some recent work on hypercyclicity

Even linear operators on infinite-dimensional spaces can display interesting dynamical properties and yield important links among functional analysis, differential and global geometry and dynamical systems, with a wide range of applications. In particular, hypercyclicity is an essentially infinite-dimensional property, when iterations of the operator generate a dense subspace. A Fréchet space a...

متن کامل

Dynamical System and Semi-Hereditarily Hypercyclic Property

In this paper we give conditions for a tuple of commutative bounded linear operators which holds in the property of the Hypercyclicity Criterion. We characterize topological transitivity and semi-hereiditarily of a dynamical system given  by an n-tuple of operators acting on a separable infinite dimensional Banach space .

متن کامل

Topological Mixing and Hypercyclicity Criterion for Sequences of Operators

For a sequence {Tn} of continuous linear operators on a separable Fréchet space X, we discuss necessary conditions and sufficient conditions for {Tn} to be topologically mixing, and the relations between topological mixing and the Hypercyclicity Criterion. Among them are: 1) topological mixing is equivalent to being hereditarily densely hypercyclic; 2) the Hypercyclicity Criterion with respect ...

متن کامل

About Subspace-Frequently Hypercyclic Operators

In this paper, we introduce subspace-frequently hypercyclic operators. We show that these operators are subspace-hypercyclic and there are subspace-hypercyclic  operators that are not subspace-frequently hypercyclic. There is a criterion like to subspace-hypercyclicity criterion that implies subspace-frequent hypercyclicity and if an operator $T$ satisfies this criterion, then $Toplus T$ is sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009